
231

Advances in Science and Technology 
Research Journal
Volume 11, Issue 2, June 2017, pages 231–239
DOI: 10.12913/22998624/71181

Research Article

NUMERICAL ANALYSIS OF THE STRESS-STRAIN STATE OF A ROPE STRAND 
WITH LINEAR CONTACT UNDER TENSION AND TORSION LOADING 
CONDITIONS

Evgenij Kalentev1, Štefan Václav2, Pavol Božek2, Valerij Tarasov1, Alexander Korshunov1 

1  Institute Mechanics Ural Branch of the Russian Academy of Sciences, T. Baramzina 34, 426067 Izhevsk, Russia, 
e-mail: eugenedavis@mail.ru; tvv@udman.ru; kai@istu.ru

2  Slovak University of Technology, Faculty of Material Science and Technology, J. Bottu 25, 91724 Trnava, Slovak 
Republic, e-mail: stefan.vaclav@stuba.sk; pavol.bozek@stuba.sk

ABSTRACT
The paper presents the results of a numerical analysis of the stress-strain state of a 
rope strand with linear contact under tension and torsion loading conditions. Calcu-
lations are carried out using the ANSYS software package. Different approaches to 
calculation of the stress-strain state of ropes are reviewed, and their advantages and 
deficiencies are considered. The analysis of the obtained results leads us to the conclu-
sion that the proposed method can be used in engineering calculations.
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INTRODUCTION

A steel rope is widely used in modern ma-
chinery, particularly in lift-and-carry machines 
and mechanisms [1, 2]. There are a large number 
of types of ropes, but the key design factors deter-
minative for structure and applicability of a par-
ticular rope type are the following: order of lay, 
cross section profile of an individual wire, pattern 
of contact between wires in a strand, contact of 
wires in a strand [3].

In regular-lay design rope, the wires with he-
lical axis are single or multistage laid around a 
central straight line wire. The regular-lay ropes 
are also known as twisted rope. If we continue the 
laying of a twisted rope, a so-called double-lay 
rope will be obtained where the twisted rope will 
be called a strand. It shall be noted that in double-
lay ropes the central wire is helical line shaped 
[4]. Continuing the laying process in a similar 
manner a rope of any lay order can be obtained. 
The twisted and double-lay ropes have gained the 
most widespread currency [5]. If wires are laid 
into strands in layers with different pitches, the 

layers will make contact at points. But if the wire 
layer pitches are equal, the wires of the upper 
layer are placed into grooves formed by the wires 
of the lower layer [6]. In this case the wire layers 
contact at lines. In strands with a large number of 
layers the combination of point and line contacts 
between wire layers is possible [7].   

Based on works [8, 9, 10], the analysis of 
developmental history of a rope concept and its 
operation affords to distinguish several basic ap-
proaches to the calculating theory of ropes and to 
look through the evolution of these approaches.

Theory of flexible thread, which identifies a 
rope as a certain superficially equivalent thread 
with no structural features, prevailed at the begin-
ning of the 1960s and served its purpose of the 
progress in force analysis of ropes, particularly in 
problems of mine hoisting dynamics. Dinnik [10] 
was the first to correlate external elastic proper-
ties of rope to its inner geometry. 

Glushko [8] and his disciples developed in 
their works a prospective trend in the mechanics 
of ropes, which opposed accuracy of calculation 
and its maximum closeness to the actual con-
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struction of rope to the theory of flexible thread. 
This trend is based on a discrete model: a rope is 
represented as a complex redundant framework, 
which is in general calculable by means of struc-
tural theory analysis. 

An alternative and relatively new trend in the 
mechanics of ropes is a trend based on continual 
approach and fundamentally different both from 
discrete model and the theory of flexible string 
[9]. The continuous model implies that a rope 
represents a solid cylinder with anisotropy cor-
responding to the simulated construction. With-
in this trend, accuracy of the analytic model (in 
contrast to the discrete one) improves with the 
increase in packing density of wires in a rope, 
while the cross section profile of an individual 
wire does not matter.

The works [11] and [12], which can be related 
to the latest research in this field, should be partic-
ularly mentioned. The work [11] offers two new 
approaches, the first of which rests on the theory 
of fibre composites and the solution of Saint-Ve-
nant’s problem for cylinder with helical anisot-
ropy. The second approach is based on a finite 
element solution of three-dimensional problem of 
elasticity theory for a solid inhomogeneous cyl-
inder formed by a finite number of elastic fibres 
having a shape of helical lines and joined by weak 
aggregate (with Young’s modulus in several or-
ders lower than Young’s modulus of a fibre). The 
work [12] contains an analysis of fretting damage 
(mechanical wear of adjoining objects subjected 
to oscillatory relative microdisplacement), result-
ing in the reduction of the rope’s durability. 

Independently of approach employed the re-
lation of axial force T, torque M, axial deforma-
tion ε and torsion angle φ is presented in the fol-
lowing analytic form:

(1)

where d11 and d22 are generalized coefficients of 
stiffness under tension and torsion; d12 is a certain 
generalized influence coefficient. It follows that:
 • in the general case the axial force, along with 

axial deformation, creates torsion and the 
torque, along with torsion, creates axial defor-
mation (the general case is understood here as 
a situation when one end of the rope is fixed 
and another one is fully loose),

 • the stiffness under tension De and torsion Dt 
essentially depend on the manner of rope ends 
fixation. 

Example 1. Assume that a rope is strained 
with a force T and its ends are fixed to prevent 
torsion (φ = 0). Thereupon having solved the (1) 
for deformation, we obtain:

(2)

The tension stiffness in this case equals 
De = d11. This variant of loading is known as pure 
tension of a rope. Under the effect of tensile force 
in the rope the torque occurs, which is balanced 
with torque in fixation. Obviously, when ε = 1 we 
obtain  T =  d11 and M = d12. Consequently the co-
efficient d11 , equal to the force initiating the unit 
tensile deformation, represents the stiffness of the 
rope at pure tension. 

Example 2. If the second rope’s end is free of 
fixation preventing the torsion (φ ≠ 0), the rope 
will untwist under the effect of inner torque. Sub-
sequently we obtain:

(3)

This type of loading is commonly referred to 
as the free tension of a rope. The negative twist 
means that the rope is untwisting relative to the 
positive direction of lay. In this case, the torsion 
stiffness equals to:

(3a)

Example 3. Assume that a rope is twisted 
with torque M, and its ends are fixed to prevent 
axial displacement (φ = 0):

(4)

This type of loading is known as pure torsion 
of a rope. Coefficient d22 represents the stiffness 
of the rope at pure torsion.

As follows from the examples, the influence 
coefficient d12 has two-way mechanical mean-
ing. Under pure tension (ε = 1, φ = 0) it equals 
to torque in the rope, and under pure torsion                     
(ε = 0, φ = 1) it equals to axial force.

We shall compare mathematical descriptions 
for deformation of a twisted rope and deforma-
tion of a straight-line elastic solid isotropic rod. 
The basic difference is that the deformation of the 
rod under tension and torsion are described by 
two independent equations [8]:
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(5)

where E - Young’s modulus of the material, F - cross-sectional area, Ip - polar second area moment of 
rod relative to its axis), while we have a system of two equations (1) for a rope. Herewith, all known ap-
proaches of elementary theory of straight-line isotropic rods (hypothesis method, Saint-Venant’s theory, 
asymptotic methods of elasticity theory) to a generation of a solution for the problem of the stress-strain 
state of a rod given the same result for its stiffness under tension: De = d11 = EF. In theory of ropes dif-
ferent approaches lead to different analytic expressions for stiffness dij [11].

We shall illustrate the application of approaches by Glushko [8], Getman and Ustinov [11] for the 
calculation of generalized stiffness and influence coefficients. The analytical expressions for generalized 
stiffness and influence coefficients are as follows:
 • according to M. F. Glushko [8]:

(6)

(7)

(8)

 • according to [11]:

(9)

(10)

(11)

In the expressions (6)÷(8) the index i is an 
identifier of a certain wire with Ei - modulus of 
material’s elasticity, Fi - cross-section area, ri - 
distance between the rope’s axis and the wire’s 
central axis, αi - lay angle, Ii - second area mo-
ment relative to its axis; Gpi - shear modulus of 
the material; Ipi - polar second area moment.

The following notations are taken in the ex-
pressions (9)÷(11): k1 - parameter, equal to the 
relation of the total cross-section area of the fi-
bres to the cross-section area of the rope taken 
as circular cylinder;  a - radius of the rope as cir-
cular cylinder; Ei- elasticity modulus of the fibre 
material; α - inclination angle of outer fibre to the 
rope’s axis; ν - Poisson ratio of the fibres.

The benefit of the mentioned approaches is 
their analytical character. However, to obtain the 
final formulas, the authors within the problem in 
hand had to resort to a number of essential sim-
plifications, which are in particular the following:

1. The theory of Academician A.N. Dinnik dis-
regards the transverse contraction of a rope 
and the stresses due to bending and torsion 
of the wires. This theory appeared to be inef-
ficient for the assessment of a rope’s strength, 
as it did not provide the actual stress pattern 
in the rope’s cross-section. According to 
this theory the stresses in the cross-section 
are uniformly distributed, which contradicts 
abundant experimental results of analysis of 
a rope’s tensile failure. 

2.  The theory of M. F. Glushko disregards inter-
nal friction forces between the rope’s elements. 
Moreover, the discrete model is not universal. 
Firstly, as the dimension of the problem direct-
ly depends on the number of wires per strand. 
Secondly, the discrete model provides for point 
contact of the construction elements.

3.  According to the theory of M.F. Glushko, the 
geometrically equivalent wires or strands in 
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each cross-section of the rope are equivalent 
in force relation as well. 

4.  In work [11] within the finite element analysis 
of the stress-strain state the contact interaction 
between the wires are ignored, which leads to 
the understating of stiffness value d11.

All these factors are taken into consideration 
in this work, which is dedicated to development of 
models affording to analyze stress state of rope’s 
strands with linear contact by contemporary nu-
merical methods involving reliable, universal and 
highly efficient application program packages.

In spite of widespread occurrence of mod-
ern software systems and finite elements analy-
sis, the problem of numerical research of rope’s 
stress-strain state is poorly enlightened in Rus-
sian scientific literature. The works [12] and [13] 
can be considered as close to this field. Amongst 
foreign literature the work [13] could be singled 
out. Unfortunately, the authors did not succeed 
in obtaining any additional information, thus 
the article contains certain descriptive aspects to 
clarify the matter.

GENERAL DATA ON THE SUBJECT 
MATTER

The subject of research is a two-lay rope’s 
strand with linear contact of LK-R type and of 
design 6x19(1+6+6/6)+1 f.c. The rope 25-GL-V-
L-O-N-T-1770 GOST 2688-80 (1 f.c. stands for 
fibre core). The total amount of wires in a strand 
– 19; wire pitch – 60 mm; strand diameter – 8 
mm; lay order – 7,5; length of rope strand l = 
100 mm; elasticity modulus of the wire material 
E = 2·105 MPa; Poisson ratio  ν = 0.3; friction 
coefficient  μ = 0.2. One of the end faces is firmly 
fastened (hereinafter the end face of the rope’s 
strand is understood as population of end faces of 
all wires in the strand). On surface of the opposite 
end, which is loose, has a simulated rigid behav-
iour, which most strictly corresponds to real load-
ing conditions of a rope strand. Table 1 presents 

some geometric characteristics of wires, which 
are necessary for rope strand model development.

The research covers cases of static loading of 
the strand end surface with rigid behaviour. The 
strand is exposed in turn to axial tensile force T 
(Variant 1), momentum M initiating torsion of the 
strand (Variant 2), combination of the force and 
momentum (Variant 3) (Figure 1). The symmetry 
conditions are not involved.  

The problem of the stress-strain state cal-
culation of a rope strand may be solved as a 
problem of contact interaction with regard to 
the friction of geometrically nonlinear wires in 
spatial stress state. 

The objective of the calculation is to define 
the following characteristics of a rope strand: 
longitudinal displacement Δl, stress intensity σi, 
movement of wires relative to each other (dis-
tance of sliding) s and contact pressures in the 
wires interaction areas p. The stress-strain state 
of a rope strand will be obtained by finite element 
method using ANSYS package. 

To create the calculation geometry of the re-
search subject we use one of 3D solid-modelling 

Table 1. Geometric characteristics of the rope strand wires

No. of Layer Wires quantity [pcs] Wires diameter [mm] Radius of wires’ helical axes
[mm] Lay angle [degrees]

0 1 1.8 – –

1 6 1.7 1.75 10.38

2–1 6 1.4 3.3 19.06

2–2 6 1.8 ≈3.059 17.76

Fig. 1. Analytic models of loading
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systems commonly used in engineering practice. 
Figure 2 shows the results of rope strand geom-
etry modelling.

The finite element mesh is generated by means 
of ANSYS built-in operation called “sweep meth-
od”. The principle of the method is as follows: 
one of the wire’s ends is selected as “source”, 
the other one as “target”, the helical axis of the 
wire as “path”. The “source” end is divided into 
finite elements (hexahedrons), which are “pro-
truded” along the “path” up to the “target” end. 
This procedure is performed for all wires of the 
rope strand. After this, the length of the finite ele-
ment edges on the end surface of the rope strand 
shall be determined. Then to ensure the required 
accuracy of calculation and structural integrity 
(regularity) of the mesh, “parametrizing” shall be 

performed on the lines making up the circumfer-
ence of each wire end (here “parametrizing” is 
understood as dividing of the finite elements into 
requisite number of sections along the selected 
line in order to develop more detailed mesh). The 
finite element model generated in this way is pre-
sented on Figure 3; the mesh key parameters are 
listed in the Table 2.

The complicated structure and multiple spatial 
contact interactions between the rope elements 
should be referred to basic problems of numeri-
cal analysis of linear contact ropes’ stress-strain 
state (Figure 4). The total amount of contact areas 
(interfaces) is determined in the following way: 
the cylindrical surface of each wire is divided into 
two semi-surfaces – contact and target ones. Con-
sequently, the contacts “Layer 0 – Layer 1” and 
“Layer 2-1 – Layer 1” involve the whole cylindri-
cal surface of the wires, and in the other cases the 
contact involves only one of the cylindrical semi-
surfaces. Here the contact between the wires is 
symmetric.    

Then from ANSYS package we enter the 
command RMODIF identifying ICONT param-
eter, which sets the distance between Gauss point 
of the contact semi-surface (detection point) and 
target semi-surface. If the indicated distance is 
greater than the value of ICONT parameter, the 
contact is missing (contact with status “open”). 
Otherwise the surfaces come into contact (the sta-
tus of contact is “close”). Entering the ICONT pa-
rameter affords to decrease discretization degree 
of the mesh (especially on curved surfaces).

For mathematical description of the contact 
interactions we employ augmented Lagrange 
method, which is the basic solution algorithm for 
such problems in ANSYS 11.0 software pack-
age [14, 15]. It rests on the interactive procedure 
of penalty function method. According to the 

Fig. 2. Calculation geometry of a rope strand with 
linear contact

Fig. 3. Finite element model of a rope strand
Fig. 4. Wire contact between Layer 2-1 and Layer 2-2 

in rope strand
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penalty function method, to define the contact 
area between two surfaces, the concept of con-
tact “spring” is introduced. The stiffness of this 
“spring” artificially introduced into the algorithm 
is called contact stiffness k and is a parameter 
of penalty function. If the status of a contact is 
“open”, which means that the surfaces have 
not come into contact, the “spring” is disabled, 
and when the surfaces come to into contact the 
“spring” becomes engaged and involved in the 
calculation algorithm. The “spring” is stretched 
by the value Δ, and the equilibrium occurs in the 
contact area as the value of contact force F = kΔ 
becomes equal to the value of external loading. To 
ensure the balance of internal and external forces 
the value Δ shall be greater than zero. In reality, 
interpenetration of two contact surfaces does not 
occur, but in ANSYS interpenetration is artifi-
cially introduced for the successful generation 
of a contact pair. The basic contact parameters 
(contact pressure and friction stress) are increas-
ing during the additional iterating process so that 
the ultimate penetration is less than the prescribed 
value of penetration allowance. The advantages 
of augmented Lagrange method include the facts 
that the algorithm on its basis minimizes the in-

terpenetration of the two contact surfaces and has 
less sensitivity towards value of contact stiffness, 
has better convergence conditions in comparison 
with immediate penalty function method [14]. 

STRESS-STRAIN STATE OF A STRAND 
UNDER VARIOUS LOADING CONDITIONS

Let us consider some results of the research. 
Table 3 presents data obtained in the separate lay-
ers of the rope strand, and Figures 5-7 illustrate 
axial deformation and stress intensity distribution 
within the rope strand in general under various 
loading conditions.

To estimate the accuracy of the obtained re-
sults we compare them with results of calculation 
by other authors’ approaches (see [8] and [11]). 
For this purpose, we will solve the equation (1) 
for deformation:

(12)

Table 2. Key parameters of finite element mesh

No. Name of quadratic element Name in Mechanical APDL Elements quantity 
in the rope strand model

1 20-nodal hexahedron Mesh200 11854

2 8-nodal contact quadrangle Conta174 9996

3 8-nodal target quadrangle Targe170 9912

Table 3. Basic calculation results of stress-strain state of a rope strand

No. of 
loading 
variant

Loading values Wire layers
Longitudinal 

displacements Δl 
[mm]

Stress intensity 
σekb 

[MPa]

Contact 
pressure p [MPa]

Distance of sliding 
S·10–3 [mm]

1 T=1000 Н
M=0

0 0.034 58–80 0.3 1.4

1 0.034 21–90 0.39 1.2

2–1 0.034 12–121 4.8 1.5

2–2 0.034 10–87 6.8 1.8

2 T=0
M=1 Нм

0 –0.041 70–84 0 0

1 –0.041 14–78 0.6 0.7

2–1 –0.041 10–97 0.5 1.2

2–2 –0.041 5–66 7.0 1.5

3 T=1000 Н
M=1 Нм

0 0.008 14–20 0.5 0.7

1 0.008 12–30 0.6 1.4

2–1 0.008 28–70 5.1 1.6

2–2 0.008 12–33 6.8 2.1
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Then using the formulas (6)÷(8) and (9)÷(11) 
we determine the coefficients of stiffness and in-
fluence. Taking into account that ε =  Δl/l we shall 
find the longitudinal displacements Δl for differ-
ent variants of loading:

(13)

(14)

(15)

The calculation results are summarized in 
Table 4. As we can see in the table, the authors’ 
solution in terms of results is closer to the ap-
proach of Glushko M. F., which currently is the 
maximum proximate to the real construction of 
ropes. The significant disagreement with results 
of I. P. Getman, Yu. A. Ustinov is explained by 
the sufficiently large difference  in values of co-
efficients of stiffness d22 and influence d12, which 
is caused by an absence of internal relations 
between individual fibres (this issue is exhaus-
tively covered in work [11]). However the cal-
culations of stiffness coefficient d11 by methods 
[8] and [11] as well as by the authors’ solution 
give results with spread within 3%. The authors 
have succeeded in obtaining results, which align 
with results of the work [9] in a qualitative sense 
only, thus the comparison with this method has 
not been brought here. It should be mentioned 
that the approaches [8] and [11] do not enable to 
define the distances of sliding.

Let us analyse the rope strand behaviour in 
general and under different variants of loading.

Variant 1. The stress-strain state of a rope 
strand as longitudinal tensile force is applied 
(Figure 5).

This type of loading results in elongation of 
the rope strand in direction of the force action 

(Figure 5a) attended with untwisting. The inten-
sity of stresses is of a non-uniform nature. Thus in 
the central wire the stresses are uniformly distrib-
uted over its cross-section, in wires of the second 
layer the stress minima are focused in the cen-
tre while the maxima are localized in the areas 
of contact with the adjoining wire layer (the 1st 
layer) and in contact areas between wires in the 
layer itself (Figure 5b).

Variant 2. The stress-strain state of a rope 
strand as a torsion moment is applied (Figure 6).

At the second variant of loading the rope 
strand is intertwisting, the wire lay angles are 
increasing, the strand is contracting, which is 
attended with its shrinking (shortening) (Figure 
6a). The stress intensities are distributed non-
uniformly (Figure 6b); in the central wire due to 
its twisting, the stress rises progressively as ap-
proaching the wire’s outer surface. In wires of 
the first layer there are local maxima in areas of 

Table 4. Longitudinal displacements Δl in a rope strand calculated by different methods

No. of 
loading 
variant

Loading values
Longitudinal displacements Δl [mm]

Method by
M.F. Glushko [2]

Method by I.P.Getman, Yu.A. 
Ustinov [4] The authors’ solution

1 T=1000 Н
M=0 0.0340 0.077 0.034

2 T=0
M=1 Нм –0.0300 –0.098 –0.041

3 T=1000 Н
M=1 Нм 0.0048 –0.021 0.008

a)

b)

Fig. 5. Axial deformation (a) and distribution of stress 
intensity (b) as longitudinal tensile force is applied to 

a rope strand
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contact interaction with the neighbouring wires; 
in the outer layer the maxima of stress intensity 
are displaced towards contact areas of the wires 
in the layer itself. 

Variant 3. The stress-strain state of a rope 
strand as longitudinal tensile force and a torsion 
moment are applied. 

Under the complex loading the absolute value 
of the strand elongation is small in comparison 
with the other loading variants, which can be ex-
plained by a combination of the loads: the tensile 
force tends to stretch the rope strand, while the 
torsion moment on the contrary tends to shrink it 
(Figure 7a). As in previous cases, the stress inten-
sities are distributed non-uniformly (Figure 7b). 
However, the spread is not so great in the central 
wire and in the wires of the first layer. The layer 
2-1 exhibits maxima of stress intensities in areas 
of contact with the 1st layer wires.

In all three cases, the maximum contact stress-
es can be observed in wires of the outer layer and 
the distances of sliding are disturbed uniformly 
along the wire length (see Table 3). The work [14] 
shows that the major factors responsible for fret-
ting caused by contact interaction are the contact 
pressures and sliding speed. The sliding speed 
can be determined through distances of sliding 
and the duration of load application. This en-
ables us to define the scientific based fretting law, 
which is the law of wire dimension variations in 
direction of axis perpendicular to the friction sur-

face, as a consequence of their deformation in the 
friction process. In the future, this will enable an 
approach to the problem of methods developed 
for the analysis on ropes durability.

On the whole, the behaviour of the rope strand 
model agrees well with the equations (1). The oc-
currence of significant contact pressures and slid-
ing of the wires relative to each other gives the 
reason to assume that they contribute significant-
ly to the performance of a rope in general and call 
for further investigation. 

CONCLUSIONS

Considered in this work, the numerical analy-
sis method affords to investigate behaviour of a 
rope strand with linear contact of wires under var-
ious loading conditions, to determine the contact 
interactions between the wires, and can be used 
as an auxiliary tool in engineering applications. 
Thus, this method enables us to:
 • provide recommendations on the usage of a 

particular lubricant. For this purpose the con-
tact algorithm of ANSYS package requires in-
troduction of values of friction coefficient be-
tween rope strand wires, which were obtained 
from experiments with various lubricants, fur-
ther calculation and comparison of the corre-
sponding stress-strain states;

 • approach more soundly the issue of ropes cull 
(by simulating breakage of one or more wires 

a)

b)

Fig. 6. Axial deformation (a) and distribution of 
stress intensity (b) as a torsion moment is applied

to a rope strand

a)

b)

Fig. 7. Axial deformation (a) and distribution of stress 
intensity (b) as longitudinal tensile force and a torsion 

moment are applied to a rope strand



239

Advances in Science and Technology Research Journal  Vol. 11 (2), 2017

and estimating redistribution of stresses and 
deformation);

 • numerically analyse the stress-strain state of 
ropes with more complicated design (irreg-
ular-laid ropes and so called locked or semi-
locked ropes) by creating the non-circular 
cross-section of wires. 
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